Future construction sign design is subject to approval on a case by case basis.
Appropriate fencing for construction sites along campus streets and pedestrian spaces is needed for the safety of the students, faculty and staff, and construction on site. Fencing is meant to protect the site as well as minimize impact on campus life.

MANAGING PEDESTRIAN TRAFFIC
Renovation of Paul M. Gross Hall

Diversion of pedestrians to opposite side of street minimizes impact on circulation and allows a safe construction site entrance.
GENERAL STANDARDS

- Clear the entrance and exit area of all vegetation, roots, and other objectionable material and properly grade it.
- Place the gravel to the specific grade and dimensions shown on the plans, and smooth it.
- Provide drainage to carry water to a sediment trap or other suitable outlet.
- Use geotextile fabrics because they improve stability of the foundation in locations subject to seepage or high water table.
- Maintain the gravel pad in a condition to prevent mud or sediment from leaving the construction site. This may require periodic topdressing with 2-inch stone.
- After each rainfall, inspect any structure used to trap sediment and clean it out as necessary. Immediately remove all objectionable materials spilled, washed, or tracked onto public roadways.

Gravel Entries must be installed to support the project’s equipment entering and exiting the site, while respecting the surrounding context’s plant life and traffic. The installation shall try to minimize the soil compaction underneath whenever possible.

GRAVEL

Recommended material for gravel on the construction site entries is decomposed granite for consistency of the campus fabric’s circulation paving materials; walkway and entry path materials are subject to approval on a case by case basis.
Street
Motor Vehicular Way
Bike Way
Landscape Buffer
Sidewalk Paving
Appropriate Temporary Construction Site Perimeter Fencing

Construction Site

Tree Protection Zone
Fencing For Tree Protection
Construction Occurs With Sensitivity To Tree Protection Zones & Campus Life

Well-Maintained Sidewalk Paving, Streetscape Lighting, & Vegetation For Preservation of Existing Campus Life; Motor Vehicular Access To The Construction Site and Campus
During construction, it is important to promote safety, while respecting campus life and its daily circulation. Temporary paths are created to balance the two.

CONSTRUCTION SIDEWALK DETOUR
June 2013

CONSTRUCTION SIDEWALK DETOUR
July 2013

CONSTRUCTION SIDEWALK AND BRIDGE DETOUR
July 2013

CONSTRUCTION SIDEWALK DETOUR, EAST CAMPUS
ALONG MAIN STREET
June 2013
GENERAL STANDARDS
Appropriate fencing for construction sites include 3 types:
• Plywood
• Chain link with fabric
• Chain link
Any patterns on the fencing must remain horizontal in orientation. Graphics for the fencing should be consistent with the surrounding context, design is subject to approval on a case by case basis.

PERIMETER PLYWOOD FENCING WITH STONE PRINT
Renovation of Rubenstein Library along Chapel Drive, July 2013.

PERIMETER PAINTED PLYWOOD FENCING
Bryant Plaza for the Events Pavilion Construction Site, July 2013.

PERIMETER PLYWOOD FENCING
Renovation of Rubenstein Library along Chapel Drive, July 2013.

PERIMETER 6 FOOT CHAIN LINK FENCING WITH BLUE FABRIC
Construction Site of Baldwin Auditorium Renovation, July 2013.

PERIMETER 6 FOOT CHAIN LINK FENCING
Construction Site off Flowers Drive, July 2013.
GENERAL STANDARDS

- Construct the sediment barrier of standard strength or extra strength synthetic filter fabrics. Ensure that the height of the sediment fence does not exceed 18 inches above the ground surface. (Higher fences may impound volumes of water sufficient to cause failure.)
- Construct the filter fabric from a continuous roll cut to the length of the barrier to avoid joints. When joints are necessary, securely fasten the filter cloth only at a support post with overlap to the next post.
- Support standard strength filter fabric by wire mesh fastened securely to the upslope side of the posts using heavy duty wire staples at least 1 inch long, or tie wires. Extend the wire mesh support to the bottom of the trench.
- When a wire mesh support fence is used, space posts a maximum of 8 feet apart. Posts should be driven securely into the ground to a minimum of 18 inches. Extra strength filter fabric with 6-ft post spacing does not require wire mesh support fence. Staple or wire the filter fabric directly to posts.
- Excavate a trench approximately 4 inches wide and 8 inches deep along the proposed line of posts and upslope from the barrier.
- Backfill the trench with compacted soil or gravel placed over the filter fabric.

Inspect sediment fences at least once a week and after each rainfall. Make any required repairs immediately. Should the fabric of a sediment fence collapse, tear, decompose or become ineffective, replace it promptly. Replace burlap every 60 days. Remove sediment deposits as necessary to provide adequate storage volume for the next rain and to reduce pressure on the fence.

Remove all fencing materials and unstable sediment, and bring the area to grade and stabilize it after the contributing drainage area has been properly stabilized.
GENERAL STANDARDS

A common failure of slops drains is caused by water saturating the soil and seeping along the pipe. This creates voids from consolidation and piping and causes washouts. Proper backfilling around and under the pipe “haunches” with stable soil material and hand compacting in 6-inch lifts to achieve firm contact between the pipe and soil at all points will eliminate this type of failure.

- Place slope drains on undisturbed soil or well-compacted fill at locations and elevations shown on the plans.
- Slightly slope the section of pipe under the dike toward its outlet.
- Hand tamp the soil under and around the entrance section in lifts not to exceed 6 inches.
- Ensure that fill over the drain at the top of the slope has minimum dimensions of 1.5 ft depth, 4 ft top width, and 3:1 side slopes.
- Ensure that all slope drain connections are watertight.
- Ensure that all fill material is well-compacted. Securely fasten the exposed section of the drain with grommets or stakes spaced no more than 10 ft apart.
- Extend the drain beyond the toe of the slope and adequately protect the outlet from erosion.
- Make the settled, compacted dike ridge no less that 1 ft above the top of the pipe at every point.
- Immediately stabilize all disturbed areas following construction.

Inspect the slope drain and supporting diversion after every rainfall and promptly make necessary repairs. When the protected area has been permanently stabilized, temporary measures may be removed, materials disposed of properly, and all disturbed areas stabilized appropriately.